(1)点A的坐标为 (﹣4,0) ,直线l的解析式为 y=x+4 ;
(2)试求点Q与点M相遇前S与t的函数关系式,并写出相应的t的取值范围;
(3)试求(2)中当t为何值时,S的值最大,并求出S的最大值;
(4)随着P,Q两点的运动,当点M在线段DC上运动时,设PM的延长线与直线l相交于点N,试探究:当t为何值时,△QMN为等腰三角形?请直接写出t的值.
考点: 一次函数综合题.
分析: (1)利用梯形性质确定点D的坐标,利用sin∠DAB= 特殊三角函数值,得到△AOD为等腰直角三角形,从而得到点A的坐标;由点A、点D的坐标,利用待定系数法求出直线l的解析式;
(2)解答本问,需要弄清动点的运动过程:
①当0<t≤1时,如答图1所示;
②当1<t≤2时,如答图2所示;
③当2<t< 时,如答图3所示.[来源:学科网ZXXK]
(3)本问考查二次函数与一次函数在指定区间上的极值,根据(2)中求出的S表达式与取值范围,逐一讨论计算,最终确定S的最大值;
(4)△QMN为等腰三角形的情形有两种,需要分类讨论,避免漏解.
解答: 解:(1)∵C(7,4),AB∥CD,
∴D(0,4).
∵sin∠DAB= ,
∴∠DAB=45°,
∴OA=OD=4,
∴A(﹣4,0).
设直线l的解析式为:y=kx+b,则有
,
解得:k=1,b=4,
∴y=x+4.
∴点A坐标为(﹣4,0),直线l的解析式为:y=x+4.
(2)在点P、Q运动的过程中:
①当0<t≤1时,如答图1所示:
过点C作CF⊥x轴于点F,则CF=4,BF=3,由勾股定理得BC=5.
过点Q作QE⊥x轴于点E,则BE=BQ•cos∠CBF=5t• =3t.
∴PE=PB﹣BE=(14﹣2t)﹣3t=14﹣5t,
S= PM•PE= ×2t×(14﹣5t)=﹣5t2+14t;
②当1<t≤2时,如答图2所示:
过点C、Q分别作x轴的垂线,垂足分别为F,E,
则CQ=5t﹣5,PE=AF﹣AP﹣EF=11﹣2t﹣(5t﹣5)=16﹣7t,
S= PM•PE= ×2t×(16﹣7t)=﹣7t2+16t;
③当点M与点Q相遇时,DM+CQ=CD=7,
即(2t﹣4)+(5t﹣5)=7,解得t= .
当2<t< 时,如答图3所示:
MQ=CD﹣DM﹣CQ=7﹣(2t﹣4)﹣(5t﹣5)=16﹣7t,
S= PM•MQ= ×4×(16﹣7t)=﹣14t+32.
(3)①当0<t≤1时,S=﹣5t2+14t=﹣5(t﹣ )2+ ,
∵a=﹣5<0,抛物线开口向下,对称轴为直线t= ,
∴当0<t≤1时,S随t的增大而增大,
∴当t=1时,S有最大值,最大值为9;
②当1<t≤2时,S=﹣7t2+16t=﹣7(t﹣ )2+ ,
∵a=﹣7<0,抛物线开口向下,对称轴为直线t= ,
∴当t= 时,S有最大值,最大值为 ;
③当2<t< 时,S=﹣14t+32
∵k=﹣14<0,
∴S随t的增大而减小.
又∵当t=2时,S=4;
当t= 时,S=0,
∴0<S<4.
综上所述,当t= 时,S有最大值,最大值为 .
(4)△QMN为等腰三角形,有两种情形:
①如答图4所示,点M在线段CD上,
MQ=CD﹣DM﹣CQ=7﹣(2t﹣4)﹣(5t﹣5)=16﹣7t,MN=DM=2t﹣4,
由MN=MQ,得16﹣7t=2t﹣4,解得t= ;
②如答图5所示,当点M运动到C点,同时当Q刚好运动至终点D,
此时△QMN为等腰三角形,t= .
故当t= 或t= 时,△QMN为等腰三角形.
点评: 本题是典型的运动型综合题,难度较大,解题关键是对动点运动过程有清晰的理解.第(3)问中,考查了指定区间上的函数极值,增加了试题的难度;另外,分类讨论的思想贯穿(2)﹣(4)问始终,同学们需要认真理解并熟练掌握.
44、(2013•宁波压轴题)如图,在平面直角坐标系中,O为坐标原点,点A的坐标为(0,4),点B的坐标为(4,0),点C的坐标为(﹣4,0),点P在射线AB上运动,连结CP与y轴交于点D,连结BD.过P,D,B三点作⊙Q与y轴的另一个交点为E,延长DQ交⊙Q于点F,连结EF,BF.
(1)求直线AB的函数解析式;
(2)当点P在线段AB(不包括A,B两点)上时.
①求证:∠BDE=∠ADP;
②设DE=x,DF=y.请求出y关于x的函数解析式;
(3)请你探究:点P在运动过程中,是否存在以B,D,F为顶点的直角三角形,满足两条直角边之比为2:1?如果存在,求出此时点P的坐标:如果不存在,请说明理由.
考点: 一次函数综合题.
分析: (1)设直线AB的函数解析式为y=kx+4,把(4,0)代入即可;
(2)①先证出△BOD≌△COD,得出∠BOD=∠CDO,再根据∠CDO=∠ADP,即可得出∠BDE=∠ADP,
②先连结PE,根据∠ADP=∠DEP+∠DPE,∠BDE=∠ABD+∠OAB,∠ADP=∠BDE,∠DEP=∠ABD,得出∠DPE=∠OAB,再证出∠DFE=∠DPE=45°,最后根据∠DEF=90°,得出△DEF是等腰直角三角形,从而求出DF= DE,即y= x;
(3)当 =2时,过点F作FH⊥OB于点H,则∠DBO=∠BFH,再证出△BOD∽△FHB, = = =2,得出FH=2,OD=2BH,再根据∠FHO=∠EOH=∠OEF=90°,得出四边形OEFH是矩形,OE=FH=2,EF=OH=4﹣OD,根据DE=EF,求出OD的长,从而得出直线CD的解析式为y=x+,最后根据 求出点P的坐标即可;
当 =时,连结EB,先证出△DEF是等腰直角三角形,过点F作FG⊥OB于点G,同理可得△BOD∽△FGB, = = =,得出FG=8,OD=BG,再证出四边形OEFG是矩形,求出OD的值,再求出直线CD的解析式,最后根据 即可求出点P的坐标.
解答: 解:(1)设直线AB的函数解析式为y=kx+4,
代入(4,0)得:4k+4=0,
解得:k=﹣1,
则直线AB的函数解析式为y=﹣x+4;
(2)①由已知得:
OB=OC,∠BOD=∠COD=90°,
又∵OD=OD,
∴△BOD≌△COD,
∴∠BOD=∠CDO,
∵∠CDO=∠ADP,
∴∠BDE=∠ADP,
②连结PE,
∵∠ADP是△DPE的一个外角,
∴∠ADP=∠DEP+∠DPE,
∵∠BDE是△ABD的一个外角,
∴∠BDE=∠ABD+∠OAB,
∵∠ADP=∠BDE,∠DEP=∠ABD,
∴∠DPE=∠OAB,
∵OA=OB=4,∠AOB=90°,
∴∠OAB=45°,
∴∠DPE=45°,
∴∠DFE=∠DPE=45°,
∵DF是⊙Q的直径,
∴∠DEF=90°,
∴△DEF是等腰直角三角形,
∴DF= DE,即y= x;
(3)当BD:BF=2:1时,
过点F作FH⊥OB于点H,
∵∠DBO+∠OBF=90°,∠OBF+∠BFH=90°,
∴∠DBO=∠BFH,
又∵∠DOB=∠BHF=90°,
∴△BOD∽△FHB,
∴ = = =2,
∴FH=2,OD=2BH,
∵∠FHO=∠EOH=∠OEF=90°,
∴四边形OEFH是矩形,
∴OE=FH=2,
∴EF=OH=4﹣OD,
∵DE=EF,
∴2+OD=4﹣OD,
解得:OD=,
∴点D的坐标为(0,),
∴直线CD的解析式为y=x+,
由 得: ,
则点P的坐标为(2,2);
当 =时,
连结EB,同(2)①可得:∠ADB=∠EDP,
而∠ADB=∠DEB+∠DBE,∠EDP=∠DAP+∠DPA,
∵∠DEP=∠DPA,
∴∠DBE=∠DAP=45°,
∴△DEF是等腰直角三角形,
过点F作FG⊥OB于点G,
同理可得:△BOD∽△FGB,
∴ = = =,
∴FG=8,OD=BG,
∵∠FGO=∠GOE=∠OEF=90°,
∴四边形OEFG是矩形,
∴OE=FG=8,
∴EF=OG=4+2OD,
∵DE=EF,
∴8﹣OD=4+2OD,
OD= ,
∴点D的坐标为(0,﹣ ),
直线CD的解析式为:y=﹣ x﹣ ,
由 得: ,
∴点P的坐标为(8,﹣4),
综上所述,点P的坐标为(2,2)或(8,﹣4).
点评: 此题考查了一次函数的综合,用到的知识点是一次函数、矩形的性质、圆的性质,关键是综合运用有关知识作出辅助线,列出方程组.
45、(2013济宁压轴题)如图,直线y=﹣x+4与坐标轴分别交于点A、B,与直线y=x交于点C.在线段OA上,动点Q以每秒1个单位长度的速度从点O出发向点A做匀速运动,同时动点P从点A出发向点O做匀速运动,当点P、Q其中一点停止运动时,另一点也停止运动.分别过点P、Q作x轴的垂线,交直线AB、OC于点E、F,连接EF.若运动时间为t秒,在运动过程中四边形PEFQ总为矩形(点P、Q重合除外).
(1)求点P运动的速度是多少?
(2)当t为多少秒时,矩形PEFQ为正方形?
(3)当t为多少秒时,矩形PEFQ的面积S最大?并求出最大值.
考点:一次函数综合题.
分析:(1)根据直线y=﹣x+4与坐标轴分别交于点A、B,得出A,B点的坐标,再利用EP∥BO,得出 = =,据此可以求得点P的运动速度;
(2)当PQ=PE时,以及当PQ=PE时,矩形PEFQ为正方形,分别求出即可;
(3)根据(2)中所求得出s与t的函数关系式,进而利用二次函数性质求出即可.
解答:解:(1)∵直线y=﹣x+4与坐标轴分别交于点A、B,
∴x=0时,y=4,y=0时,x=8,
∴ ==,
当t秒时,QO=FQ=t,则EP=t,
∵EP∥BO,
∴ = =,
∴AP=2t,
∵动点Q以每秒1个单位长度的速度从点O出发向点A做匀速运动,
∴点P运动的速度是每秒2个单位长度;
(2)如图1,当PQ=PE时,矩形PEFQ为正方形,
则∵OQ=FQ=t,PA=2t,
∴QP=8﹣t﹣2t=8﹣3t,
∴8﹣3t=t,
解得:t=2,
如图2,当PQ=PE时,矩形PEFQ为正方形,
∵OQ=t,PA=2t,
∴OP=8﹣2t,
∴QP=t﹣(8﹣2t)=3t﹣8,
∴t=3t﹣8,
解得:t=4;
(3)如图1,当Q在P点的左边时,
∵OQ=t,PA=2t,
∴QP=8﹣t﹣2t=8﹣3t,
∴S矩形PEFQ=QP•QF=(8﹣3t)•t=8t﹣3t2,
当t=﹣ =时,
S矩形PEFQ的最大值为: =4,
如图2,当Q在P点的右边时,
∵OQ=t,PA=2t,
∴QP=t﹣(8﹣2t)=3t﹣8,
∴S矩形PEFQ=QP•QE=(3t﹣8)•t=3t2﹣8t,
∵当点P、Q其中一点停止运动时,另一点也停止运动,
∴0≤t≤4,
当t=﹣ =时,S矩形PEFQ的最小,
∴t=4时,S矩形PEFQ的最大值为:3×42﹣8×4=16,
综上所述,当t=4时,S矩形PEFQ的最大值为:16.
点评:此题主要考查了二次函数与一次函数的综合应用,得出P,Q不同的位置进行分类讨论得出是解题关键.