课本站

导航

   当前位置:首页 > 初中 > 初三九年级 > 全部初中初三九年级数学下册

0 0 0 0 0
版本: 全部 人教版 人民版 苏教版 北师大版 沪教版 鲁教版 冀教版 浙教版 仁爱版 外研版 译林版 闽教版 语文版 青岛版 中图版 科粤版 春粤教版 西师大版 北京版 川教版 粤教版 新华师大版 岳麓版 沪科版 鲁科版 苏科版 湘教版 科教版 鄂教版 长春版
年级: 全部 幼儿园 小学 初中 高中 一年级 二年级 三年级 四年级 五年级 六年级 初一七年级 初二八年级 初三九年级 高一 高二 高三
学科: 全部 语文 数学 英语 物理 科学 地理 化学 生物 历史 政治 思想 音乐 美术 体育 健康教育 品德与生活 品德与社会 绘本故事 历史与社会 信息技术
    册: 全部 上册 下册 全册
类别: 全部     课文原文     视频     课件ppt     试题试卷     课本剧     教学案例|教学实录     剧本|情景剧     插图|图片|课文配图     录音mp3|课文朗读     教学设计|教案设计     阅读答案|练习与测试答案     翻译|译文     教师用书     语法修辞     练习题|练习册答案     阅读理解|阅读训练     教学计划     教材全解|教材解读     练习设计     教案|教案下载     说课设计|说课稿     电子书

2013年中考数学四边形(正方形)试题汇编

本资料为WORD文档,请点击下载地址下载全文下载地址
章 来源莲山课件 ww oM

35、(2013•呼和浩特)如图,在边长为3的正方形ABCD中,点E是BC边上的点,BE=1,∠AEP=90°,且EP交正方形外角的平分线CP于点P,交边CD于点F,
(1) 的值为   ;
(2)求证:AE=EP;
(3)在AB边上是否存在点M,使得四边形DMEP是平行四边形?若存在,请给予证明;若不存在,请说明理由.
 

考点: 正方形的性质;全等三角形的判定与性质;平行四边形的判定.3718684
分析: (1)由正方形的性质可得:∠B=∠C=90°,由同角的余角相等,可证得:∠BAE=∠CEF,根据同角的正弦值相等即可解答;
(2)在BA边上截取BK=NE,连接KE,根据角角之间的关系得到∠AKE=∠ECP,由AB=CB,BK=BE,得AK=EC,结合∠KAE=∠CEP,证明△AKE≌△ECP,于是结论得出;
(3)作DM⊥AE于AB交于点M,连接ME、DP,易得出DM∥EP,由已知条件证明△ADM≌△BAE,进而证明MD=EP,四边形DMEP是平行四边形即可证出.
解答: (1)解:∵四边形ABCD是正方形,
∴∠B=∠D,
∵∠AEP=90°,
∴∠BAE=∠FEC,
在Rt△ABE中,AE= = ,
∵sin∠BAE= =sin∠FEC= ,
∴ = ,

(2)证明:在BA边上截取BK=NE,连接KE,
∵∠B=90°,BK=BE,
∴∠BKE=45°,
∴∠AKE=135°,
∵CP平分外角,
∴∠DCP=45°,
∴∠ECP=135°,
∴∠AKE=∠ECP,
∵AB=CB,BK=BE,
∴AB﹣BK=BC﹣BE,
即:AK=EC,
易得∠KAE=∠CEP,
∵在△AKE和△ECP中,
 ,
∴△AKE≌△ECP(ASA),
∴AE=EP;

(3)答:存在.
证明:作DM⊥AE于AB交于点M,
则有:DM∥EP,连接ME、DP,
∵在△ADM与△BAE中,
 ,
∴△ADM≌△BAE(AAS),
∴MD=AE,
∵AE=EP,
∴MD=EP,
∴MD EP,
∴四边形DMEP为平行四边形.
 
点评: 此题考查了相似三角形的判定与性质,全等三角形的判定与性质以及正方形的性质等知识.此题综合性很强,图形比较复杂,解题的关键是注意数形结合思想的应用与辅助线的准确选择.
 
36、(2013泰安)如图,四边形ABCD为正方形.点A的坐标为(0,2),点B的坐标为(0,﹣3),反比例函数y=的图象经过点C,一次函数y=ax+b的图象经过点C,一次函数y=ax+b的图象经过点A,
(1)求反比例函数与一次函数的解析式;
(2)求点P是反比例函数图象上的一点,△OAP的面积恰好等于正方形ABCD的面积,求P点的坐标.
 
考点:反比例函数与一次函数的交点问题.
分析:(1)先根据正方形的性质求出点C的坐标为(5,﹣3),再将C点坐标代入反比例函数y=中,运用待定系数法求出反比例函数的解析式;同理,将点A,C的坐标代入一次函数y=ax+b中,运用待定系数法求出一次函数函数的解析式;
(2)设P点的坐标为(x,y),先由△OAP的面积恰好等于正方形ABCD的面积,列出关于x的方程,解方程求出x的值,再将x的值代入y=﹣ ,即可求出P点的坐标.
解答:解:(1)∵点A的坐标为(0,2),点B的坐标为(0,﹣3),
∴AB=5,
∵四边形ABCD为正方形,
∴点C的坐标为(5,﹣3).
∵反比例函数y=的图象经过点C,
∴﹣3=,解得k=﹣15,
∴反比例函数的解析式为y=﹣ ;
∵一次函数y=ax+b的图象经过点A,C,
∴ ,
解得 ,
∴一次函数的解析式为y=﹣x+2;
(2)设P点的坐标为(x,y).
∵△OAP的面积恰好等于正方形ABCD的面积,
∴×OA•|x|=52,
∴×2|x|=25,
解得x=±25.
当x=25时,y=﹣ =﹣;
当x=﹣25时,y=﹣ =.
∴P点的坐标为(25,﹣)或(﹣25,).
点评:本题考查了正方形的性质,反比例函数与一次函数的交点问题,运用待定系数法求反比例函数与一次函数的解析式,三角形的面积,难度适中.运用方程思想是解题的关键.

37、(2013•资阳)在一个边长为a(单位:cm)的正方形ABCD中,点E、M分别是线段AC,CD上的动点,连结DE并延长交正方形的边于点F,过点M作MN⊥DF于H,交AD于N.
(1)如图1,当点M与点C重合,求证:DF=MN;
(2)如图2,假设点M从点C出发,以1cm/s的速度沿CD向点D运动,点E同时从点A出发,以 cm/s速度沿AC向点C运动,运动时间为t(t>0);
①判断命题“当点F是边AB中点时,则点M是边CD的三等分点”的真假,并说明理由.
②连结FM、FN,△MNF能否为等腰三角形?若能,请写出a,t之间的关系;若不能,请说明理由.
 

考点: 四边形综合题
分析: (1)证明△ADF≌△DNC,即可得到DF=MN;
(2)①首先证明△AFE∽△CDE,利用比例式求出时间t= a,进而得到CM= a= CD,所以该命题为真命题;
②若△MNF为等腰三角形,则可能有三种情形,需要分类讨论.
解答: (1)证明:∵∠DNC+∠ADF=90°,∠DNC+∠DCN=90°,
∴∠ADF=∠DCN.
在△ADF与△DNC中,
 ,
∴△ADF≌△DNC(ASA),
∴DF=MN.

(2)解:①该命题是真命题.
理由如下:当点F是边AB中点时,则AF= AB= CD.
∵AB∥CD,∴△AFE∽△CDE,
∴ ,
∴AE= EC,则AE= AC= a,
∴t= = a.
则CM=1•t= a= CD,
∴点M为边CD的三等分点.
②能.理由如下:
易证AFE∽△CDE,∴ ,即 ,得AF= .
易证△MND∽△DFA,∴ ,即 ,得ND=t.
∴ND=CM=t,AN=DM=a﹣t.
若△MNF为等腰三角形,则可能有三种情形:
(I)若FN=MN,则由AN=DM知△FAN≌△NDM,
∴AF=DM,即 =t,得t=0,不合题意.
∴此种情形不存在;
(II)若FN=FM,由MN⊥DF知,HN=HM,∴DN=DM=MC,
∴t= a,此时点F与点B重合;
(III)若FM=MN,显然此时点F在BC边上,如下图所示:
 
易得△MFC≌△NMD,∴FC=DM=a﹣t;
又由△NDM∽△DCF,∴ ,即 ,∴FC= .
∴ =a﹣t,
∴t=a,此时点F与点C重合.
综上所述,当t=a或t= a时,△MNF能够成为等腰三角形.
点评: 本题是运动型几何综合题,考查了相似三角形、全等三角形、正方形、等腰三角形、命题证明等知识点.解题要点是:(1)明确动点的运动过程;(2)明确运动过程中,各组成线段、三角形之间的关系;(3)运用分类讨论的数学思想,避免漏解.

38、(2013杭州压轴题)如图,已知正方形ABCD的边长为4,对称中心为点P,点F为BC边上一个动点,点E在AB边上,且满足条件∠EPF=45°,图中两块阴影部分图形关于直线AC成轴对称,设它们的面积和为S1.
(1)求证:∠APE=∠CFP;
(2)设四边形CMPF的面积为S2,CF=x, .
①求y关于x的函数解析式和自变量x的取值范围,并求出y的最大值;
②当图中两块阴影部分图形关于点P成中心对称时,求y的值.
 
考点:四边形综合题.
分析:(1)利用正方形与三角形的相关角之间的关系可以证明结论;
(2)本问关键是求出y与x之间的函数解析式.
①首先分别用x表示出S1与S2,然后计算出y与x的函数解析式.这是一个二次函数,求出其最大值;
②注意中心对称、轴对称的几何性质.
解答:(1)证明:∵∠EPF=45°,
∴∠APE+∠FPC=180°﹣45°=135°;
而在△PFC中,由于PF为正方形ABCD的对角线,则∠PCF=45°,
则∠CFP+∠FPC=180°﹣45°=135°,
∴∠APE=∠CFP.
(2)解:①∵∠APE=∠CFP,且∠FCP=∠PAE=45°,
∴△APE∽△CPF,则 .
而在正方形ABCD中,AC为对角线,则AC= AB= ,
又∵P为对称中心,则AP=CP= ,
∴AE= = =.
如图,过点P作PH⊥AB于点H,PG⊥BC于点G,
 
P为AC中点,则PH∥BC,且PH=BC=2,同理PG=2.
S△APE= =×2×=,
∵阴影部分关于直线AC轴对称,
∴△APE与△APN也关于直线AC对称,
则S四边形AEPN=2S△APE= ;
而S2=2S△PFC=2× =2x,
∴S1=S正方形ABCD﹣S四边形AEPN﹣S2=16﹣ ﹣2x,
∴y= = = +﹣1.
∵E在AB上运动,F在BC上运动,且∠EPF=45°,
∴2≤x≤4.
令=a,则y=﹣8a2+8a﹣1,当a= =,即x=2时,y取得最大值.
而x=2在x的取值范围内,代入x=2,则y最大=4﹣2﹣1=1.
∴y关于x的函数解析式为:y= +﹣1(2≤x≤4),y的最大值为1.
②图中两块阴影部分图形关于点P成中心对称,
而此两块图形也关于直线AC成轴对称,则阴影部分图形自身关于直线BD对称,
则EB=BF,即AE=FC,
∴=x,解得x= ,
代入x= ,得y= ﹣2.
点评:本题是代数几何综合题,考查了正方形的性质、相似三角形、二次函数的解析式与最值、几何变换(轴对称与中心对称)、图形面积的计算等知识点,涉及的考点较多,有一定的难度.本题重点与难点在于求出y与x的函数解析式,在计算几何图形面积时涉及大量的计算,需要细心计算避免出错. 


章 来源莲山课件 ww oM

下载地址

阅读()