课本站

导航

   当前位置:首页 > 初中 > 初三九年级 > 全部初中初三九年级数学下册

0 0 0 0 0
版本: 全部 人教版 人民版 苏教版 北师大版 沪教版 鲁教版 冀教版 浙教版 仁爱版 外研版 译林版 闽教版 语文版 青岛版 中图版 科粤版 春粤教版 西师大版 北京版 川教版 粤教版 新华师大版 岳麓版 沪科版 鲁科版 苏科版 湘教版 科教版 鄂教版 长春版
年级: 全部 幼儿园 小学 初中 高中 一年级 二年级 三年级 四年级 五年级 六年级 初一七年级 初二八年级 初三九年级 高一 高二 高三
学科: 全部 语文 数学 英语 物理 科学 地理 化学 生物 历史 政治 思想 音乐 美术 体育 健康教育 品德与生活 品德与社会 绘本故事 历史与社会 信息技术
    册: 全部 上册 下册 全册
类别: 全部     课文原文     视频     课件ppt     试题试卷     课本剧     教学案例|教学实录     剧本|情景剧     插图|图片|课文配图     录音mp3|课文朗读     教学设计|教案设计     阅读答案|练习与测试答案     翻译|译文     教师用书     语法修辞     练习题|练习册答案     阅读理解|阅读训练     教学计划     教材全解|教材解读     练习设计     教案|教案下载     说课设计|说课稿     电子书

2013年中考数学二元一次方程组试题汇编

本资料为WORD文档,请点击下载地址下载全文下载地址

2013中考全国100份试卷分类汇编
二元一次方程组
1、(2013杭州)若a+b=3,a﹣b=7,则ab=(  )
  A.﹣10 B.﹣40 C.10 D.40
考点:完全平方公式.
专题:计算题.
分析:联立已知两方程求出a与b的值,即可求出ab的值.
解答:解:联立得: ,
解得:a=5,b=﹣2,
则ab=﹣10.
故选A.
点评:此题考查了解二元一次方程组,求出a与b的值是解本题的关键. 
2、(2013凉山州)已知方程组 ,则x+y的值为(  )
  A.﹣1 B.0 C.2 D.3
考点:解二元一次方程组.
专题:计算题.
分析:把第二个方程乘以2,然后利用加减消元法求解得到x、y的值,再相加即可.
解答:解: ,
②×2得,2x+6y=10③,
③﹣①得,5y=5,
解得y=1,
把y=1代入①得,2x+1=5,
解得x=2,
所以,方程组的解是 ,
所以,x+y=2+1=3.
故选D.
点评:本题考查的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单. 
3、(2013•广安)如果 a3xby与﹣a2ybx+1是同类项,则(  )
  A.   B.   C.   D. 

考点: 解二元一次方程组;同类项.
专题: 计算题
分析: 根据同类项的定义列出方程组,然后利用代入消元法求解即可.
解答: 解:∵ a3xby与﹣a2ybx+1是同类项,
∴ ,
②代入①得,3x=2(x+1),
解得x=2,
把x=2代入②得,y=2+1=3,
所以,方程组的解是 .
故选D.
点评: 本题考查的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单,根据同类项的“两同”列出方程组是解题的关键.

4、(2013年广州市)已知两数x,y之和是10,x比y的3倍大2,则下面所列方程组正确的是(     )
A    B    C      D
分析:根据等量关系为:两数x,y之和是10;x比y的3倍大2,列出方程组即可
解:根据题意列方程组,得: .故选:C.
点评:此题主要考查了由实际问题抽象出二元一次方程组,要注意抓住题目中的一些关键性词语“x比y的3倍大2”,找出等量关系,列出方程组是解题关键.

5、(2013鞍山)若方程组 ,则3(x+y)﹣(3x﹣5y)的值是        .
考点:解二元一次方程组.
专题:整体思想.
分析:把(x+y)、(3x﹣5y)分别看作一个整体,代入进行计算即可得解.
解答:解:∵ ,
∴3(x+y)﹣(3x﹣5y)=3×7﹣(﹣3)=21+3=24.
故答案为:24.
点评:本题考查了解二元一次方程组,计算时不要盲目求解,利用整体思想代入计算更加简单. 
6、(2013•咸宁)已知 是二元一次方程组 的解,则m+3n的立方根为 2 .

考点: 二元一次方程组的解;立方根.
分析: 将 代入方程组 ,可得关于m、n的二元一次方程组,解出m、n的值,代入代数式即可得出m+3n的值,再根据立方根的定义即可求解.
解答: 解:把 代入方程组 ,
得: ,解得 ,
则m+3n= +3×=8,
所以 = =2.
故答案为2.
点评: 本题考查了二元一次方程组的解,解二元一次方程组及立方根的定义等知识,属于基础题,注意“消元法”的运用.
7、(2013•毕节地区)二元一次方程组 的解是   .

考点: 解二元一次方程组.
专题: 计算题.
分析: 根据y的系数互为相反数,利用加减消元法求解即可.
解答: 解: ,
①+②得,4x=12,
解得x=3,
把x=3代入①得,3+2y=1,
解得y=﹣1,
所以,方程组的解是 .
故答案为: .
点评: 本题考查的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单.

8、(2013安顺)4xa+2b﹣5﹣2y3a﹣b﹣3=8是二元一次方程,那么a﹣b=      .
考点:二元一次方程的定义;解二元一次方程组.
分析:根据二元一次方程的定义即可得到x、y的次数都是1,则得到关于a,b的方程组求得a,b的值,则代数式的值即可求得.
解答:解:根据题意得: ,
解得: .
则a﹣b=0.
故答案是:0.
点评:主要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.
 
9、(2013•遵义)解方程组 .

考点: 解二元一次方程组.
专题: 计算题.
分析: 由第一个方程得到x=2y+4,然后利用代入消元法其解即可.
解答: 解: ,
由①得,x=2y+4③,
③代入②得2(2y+4)+y﹣3=0,
解得y=﹣1,
把y=﹣1代入③得,x=2×(﹣1)+4=2,
所以,方程组的解是 .
点评: 本题考查的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单.

10、(2013•湘西州)解方程组: .

考点: 解二元一次方程组.
分析: 先由①得出x=1﹣2y,再把x的值代入求出y的值,再把y的值代入x=1﹣2y,即可求出x的值,从而求出方程组的解.
解答: 解: ,
由①得:x=1﹣2y  ③,
把③代入②得:y=﹣1,
把y=﹣1代入③得:x=3,
则原方程组的解为: .
点评: 此题考查了解二元一次方程组,解二元一次方程组常用的方法是加减法和代入法两种,般选用加减法解二元一次方程组较简单.

11、(2013成都市)解方程组:
 .
解析:
①式+②式有3x=6⇒x=2  代入①得y=-1
∴方程解为

12、(2013•黄冈)解方程组: .

考点: 解二元一次方程组.
专题: 计算题.
分析: 把方程组整理成一般形式,然后利用代入消元法其求即可.
解答: 解:方程组可化为 ,
由②得,x=5y﹣3③,
③代入①得,5(5y﹣3)﹣11y=﹣1,
解得y=1,
把y=1代入③得,x=5﹣3=2,
所以,原方程组的解是 .
点评: 本题考查的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单.

13、(13年山东青岛、16)(1)解方程组:            
解析:(1)两式相加,得:x=1,把x=1代入第2式,得y=1 ,
所以原方程组 的解:
14、(2013年广东省5分、17)解方程组
答案:
解析:用代入消元法可求解。

下载地址

阅读()