课本站

导航

   当前位置:首页 > 初中 > 初三九年级 > 全部初中初三九年级数学下册

0 0 0 0 0
版本: 全部 人教版 人民版 苏教版 北师大版 沪教版 鲁教版 冀教版 浙教版 仁爱版 外研版 译林版 闽教版 语文版 青岛版 中图版 科粤版 春粤教版 西师大版 北京版 川教版 粤教版 新华师大版 岳麓版 沪科版 鲁科版 苏科版 湘教版 科教版 鄂教版 长春版
年级: 全部 幼儿园 小学 初中 高中 一年级 二年级 三年级 四年级 五年级 六年级 初一七年级 初二八年级 初三九年级 高一 高二 高三
学科: 全部 语文 数学 英语 物理 科学 地理 化学 生物 历史 政治 思想 音乐 美术 体育 健康教育 品德与生活 品德与社会 绘本故事 历史与社会 信息技术
    册: 全部 上册 下册 全册
类别: 全部     课文原文     视频     课件ppt     试题试卷     课本剧     教学案例|教学实录     剧本|情景剧     插图|图片|课文配图     录音mp3|课文朗读     教学设计|教案设计     阅读答案|练习与测试答案     翻译|译文     教师用书     语法修辞     练习题|练习册答案     阅读理解|阅读训练     教学计划     教材全解|教材解读     练习设计     教案|教案下载     说课设计|说课稿     电子书

2013年全国中考数学一次函数试题汇编

本资料为WORD文档,请点击下载地址下载全文下载地址 x+n;
∵点C(6,380)、点D(7,480)在直线BD上,
∴ ;(6分)
解得 ;∴BD的解析式是y甲=100x﹣220;(7分)
∵B点在直线BD上且点B的横坐标为4.9,代入y甲得B(4.9,270),
∴甲组在排除故障时,距出发点的路程是270千米.(8分)

(3)符合约定;
由图象可知:甲、乙两组第一次相遇后在B和D相距最远.
在点B处有y乙﹣y甲=80×4.9﹣100﹣(100×4.9﹣220)=22千米<25千米(10分)
在点D有y甲﹣y乙=100×7﹣220﹣(80×7﹣100)=20千米<25千米(11分)
∴按图象所表示的走法符合约定.(12分)
点评: 本题是依据函数图象提供的信息,解答相关的问题,充分体现了“数形结合”的数学思想,是中考的常见题型,其关键是认真观察函数图象、结合已知条件,正确地提炼出图象信息.
(2013•绥化)如图,直线MN与x轴,y轴分别相交于A,C两点,分别过A,C两点作x轴,y轴的垂线相交于B点,且OA,OC(OA>OC)的长分别是一元二次方程x2﹣14x+48=0的两个实数根.
(1)求C点坐标;
(2)求直线MN的解析式;
(3)在直线MN上存在点P,使以点P,B,C三点为顶点的三角形是等腰三角形,请直接写出P点的坐标.

考点: 一次函数综合题
分析: (1)通过解方程x2﹣14x+48=0可以求得OC=6,OA=8.则C(0,6);
(2)设直线MN的解析式是y=kx+b(k≠0).把点A、C的坐标分别代入解析式,列出关于系数k、b的方程组,通过解方程组即可求得它们的值;
(3)需要分类讨论:PB为腰,PB为底两种情况下的点P的坐标.根据等腰三角形的性质、两点间的距离公式以及一次函数图象上点的坐标特征进行解答.
解答: 解:(1)解方程x2﹣14x+48=0得
x1=6,x2=8.
∵OA,OC(OA>OC)的长分别是一元二次方程x2﹣14x+48=0的两个实数根,
∴OC=6,OA=8.
∴C(0,6);

(2)设直线MN的解析式是y=kx+b(k≠0).
由(1)知,OA=8,则A(8,0).
∵点A、C都在直线MN上,
∴ ,
解得, ,
∴直线MN的解析式为y=﹣ x+6;

(3)∵A(8,0),C(0,6),
∴根据题意知B(8,6).
∵点P在直线MNy=﹣ x+6上,
∴设P(a,﹣ a+6)
当以点P,B,C三点为顶点的三角形是等腰三角形时,需要分类讨论:
①当PC=PB时,点P是线段BC的中垂线与直线MN的交点,则P1(4,3);
②当PC=BC时,a2+(﹣ a+6﹣6)2=64,
解得,a= ,则P2(﹣ , ),P3( , );
③当PB=BC时,(a﹣8)2+(﹣ a+6﹣6)2=64,
解得,a= ,则﹣ a+6=﹣ ,∴P4( ,﹣ ).
综上所述,符合条件的点P有:P1(4,3),P2(﹣ , )P3( , ),P4( ,﹣ ).
 
点评: 本题考查了一次函数综合题.其中涉及到的知识点有:待定系数法求一次函数解析式,一次函数图象上点的坐标特征,等腰三角形的性质.解答(3)题时,要分类讨论,防止漏解.另外,解答(3)题时,还利用了“数形结合”的数学思想.
(2013,河北)如图15,A(0,1),M(3,2),N(4,4).动点P从点A出发,沿轴以每秒1个单位长的速度向上移动,且过点P的直线l:y=-x+b也随之移动,设移动时间为t秒.
(1)当t=3时,求l的解析式;
(2)若点M,N位于l的异侧,确定t的取值范围;
(3)直接写出t为何值时,点M关于l的对称点落在坐标轴上.

(2013•安徽)如图,在平面直角坐标系中,点A、B分别在x轴、y轴上,线段OA、OB的长(0A<OB)
是方程x2-18x+72=0的两个根,点C是线段AB的中点,点D在线段OC上,OD=2CD.
  (1)求点C的坐标;
  (2)求直线AD的解析式;
  (3)P是直线AD上的点,在平面内是否存在点Q,使以O、A、P、Q为顶点的四边形是菱形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.
 【解】

(1)OA=6,OB=12 
点C是线段AB的中点,OC=AC
作CE⊥x轴于点E.
    ∴ OE=12OA=3,CE=12OB=6.
∴ 点C的坐标为(3,6)
  (2)作DF⊥x轴于点F
    △OFD∽△OEC,ODOC=23,于是可求得OF=2,DF=4.
∴ 点D的坐标为(2,4)
    设直线AD的解析式为y=kx+b.
把A(6,0),D(2,4)代人得
    解得k=-1,b=6
    ∴ 直线AD的解析式为y=-x+6 
  (3)存在.
    Q1(-32,32)
    Q2(32,-32)
    Q3(3,-3)
    Q4(6,6)

.(2013•上海)李老师开车从甲地到相距240千米的乙地,如果邮箱剩余油量  (升)与行驶里程  (千米)之间是一次函数关系,其图像如图4所示,那么到达乙地时邮箱剩余油量是__________升.

 
(2013•毕节地区)一次函数y=kx+1的图象经过(1,2),则反比例函数 的图象经过点(2,  ).

考点: 反比例函数图象上点的坐标特征;一次函数图象上点的坐标特征.
分析: 把点(1,2)代入一次函数解析式求得k的值.然后利用反比例函数图象上点的坐标特征来填空.
解答: 解:∵一次函数y=kx+1的图象经过(1,2),
∴2=k+1,
解得,k=1.
则反比例函数解析式为y=,
∴当x=2时,y=.
故答案是:.
点评: 本题考查了一次函数、反比例函数图象上点的坐标特征.利用待定系数法求得一次函数解析式是解题的关键.
 
(2013•昆明)已知正比例函数Y=KX的图像经过点A(-1,2),则正比例函数的解析式为             。

(2013•柳州)某游泳池有水4000m3,先放水清洗池子.同时,工作人员记录放水的时间x(单位:分钟)与池内水量y(单位:m3) 的对应变化的情况,如下表:
时间x(分钟) … 10 20 30 40 …
水量y(m3) … 3750 3500 3250 3000 …
(1)根据上表提供的信息,当放水到第80分钟时,池内有水多少m3?
(2)请你用函数解析式表示y与x的关系,并写出自变量x的取值范围.

考点: 一次函数的应用.
分析: (1)观察不难发现,每10分钟放水250m3,然后根据此规律求解即可;
(2)设函数关系式为y=kx+b,然后取两组数,利用待定系数法一次函数解析式求解即可.
解答: 解:(1)由图表可知,每10分钟放水250m3,
所以,第80分钟时,池内有水4000﹣8×250=2000m3;

(2)设函数关系式为y=kx+b,
∵x=20时,y=3500,
x=40时,y=3000,
∴ ,
解得 ,
所以,y=﹣250+4000.
点评: 本题主要考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,仔细分析数据,从图表准确获取信息是解题的关键.
(2013•铜仁)如图,直线y=kx+b交坐标轴于A(-2,0),B(0,3)两点,则不等式kx+b>0的解集是(   )
A.x>3    B.-2<x<3
C.x<-2    D.x>-2

(2013•临沂)某工厂投入生产一种机器的总成本为2000万元.当该机器生产数量至少为10台,但不超过70台时,每台成本y与生产数量x之间是一次函数关系,函数y与自变量x的部分对应值如下表:
x(单位:台) 10 20 30
y(单位:万元∕台) 60 55 50
(1)求y与x之间的函数关系式,并写出自变量x的取值范围;
(2)求该机器的生产数量;
(3)市场调查发现,这种机器每月销售量z(台)与售价a(万元∕台)之间满足如图所示的函数关系.该厂生产这种机器后第一个月按同一售价共卖出这种机器25台,请你求出该厂第一个月销售这种机器的利润.(注:利润=售价﹣成本)
 

考点: 一次函数的应用.
分析: (1)设y与x之间的关系式为y=kx+b,运用待定系数法就可以求出其关系式,由该机器生产数量至少为10台,但不超过70台就可以确定自变量的取值范围;
(2)根据每台的成本乘以生产数量等于总成本建立方程求出其解即可;
(3)设每月销售量z(台)与售价a(万元∕台)之间的函数关系式为z=ka+b,运用待定系数法求出其解析式,再将z=25代入解析式求出a的值,就可以求出每台的利润,从而求出总利润.
解答: 解:(1)设y与x之间的关系式为y=kx+b,由题意,得
 ,
解得: ,
∴y=﹣ x+65.
∵该机器生产数量至少为10台,但不超过70台,
∴10≤x≤70;

(2)由题意,得
xy=2000,
﹣ x2+65x=2000,
﹣x2+130x﹣4000=0,
解得:x1=50,x2=80>70(舍去).
答:该机器的生产数量为50台;

(3)设每月销售量z(台)与售价a(万元∕台)之间的函数关系式为z=ka+b,由函数图象,得
 ,
解得: ,
∴z=﹣a+90.
当z=25时,a=65.
当x=50时,y=40
总利润为:25(65﹣40)=625万元.
答:该厂第一个月销售这种机器的利润为625万元.
点评: 本题考查了待定系数法求一次函数的解析式的运用,一元二次方程的运用,销售问题利润=售价﹣进价的运用,解答时求出一次函数的解析式是关键.
(2013•茂名)如图,三个正比例函数的图象分别对应表达式:① ,② ,③ ,将 , , 从小到大排列并用“ ”连接为             .

(2013•重庆B)已知正比例函数y=kx( )的图象经过点(1,-2),则正比例函数的解析式为
A.            B.           C.           D.

下载地址

阅读()